Machine Learning-Based Pruning Technique for Low Power Approximate Computing

نویسندگان

چکیده

Approximate Computing is a low power achieving technique that offers an additional degree of freedom to design digital circuits. Pruning one the types approximate circuit which removes logic gates or wires in reduce consumption with minimal insertion error. In this work, novel machine learning (ML) -based pruning introduced The machine-learning algorithm random forest decision tree used prune nodes selectively based on their input pattern. addition, error compensation value added original output rate. Experimental results proved efficiency proposed terms area, and Compared conventional pruning, ML achieves 32% 26% area delay reductions 8*8 multiplier implementation. Low image processing algorithms are essential various applications like compression enhancement algorithms. For real-time evaluation, optimized applied discrete cosine transform (DCT). It basic element video applications. benchmark images show very good peak signal-to-noise ratio (PSNR) considerable amount energy savings compared other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imprecise Minority-Based Full Adder for ‎Approximate Computing Using CNFETs

   Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Voting based Extreme Learning Machine with Accuracy based ensemble Pruning

Extreme Learning Machine is a fast single layer feed forward neural network for real valued classification. It suffers from the problem of instability and over fitting. Voting based Extreme Learning Machine, VELM reduces this performance variation in Extreme Learning Machine by employing majority voting based ensembling technique. VELM improves the performance of ELM at the cost of increased re...

متن کامل

Automated High-Level Generation of Low-Power Approximate Computing Circuits

Numerous application domains (e.g., signal and image processing, computer graphics, computer vision, and machine learning) are inherently error tolerant, which can be exploited to produce approximate ASIC implementations with low power consumption at the expense of negligible or small reductions in application quality. A major challenge is the need for approximate and high-level design generati...

متن کامل

Cloud Computing for Short-Term Load Forecasting Based on Machine Learning Technique

Short-term electric load forecasting (STLF) plays the main role in making operational decisions in any electrical power system. The implementation of forecasting algorithms collides with the high computational power needed to perform the complex perdition processes on large datasets. In this paper, a cloudbased STLF algorithm is implemented. The performance analysis of the proposed system was c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer systems science and engineering

سال: 2022

ISSN: ['0267-6192']

DOI: https://doi.org/10.32604/csse.2022.021637